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Preclinical QSP Modeling in the Pharmaceutical Industry: An 1Q Consortium SurveyExamining the Current Landscape. Marjoleen J.M.A. Nijsen, Fan Wu, Loveleena Bansal, Erica
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Bradshaw-Pierce, Jason R. Chan, Bianca M. Liederer, Jerome T. Mettetal, Patricia Schroeder, Edgar Schuck, Alice Tsai, Christine Xu, Anjaneya Chimalakonda, Kha Le, Mark Penney,
Brian Topp, Akihiro Yamada, Mary E. Spilker CPT Pharmacometrics Syst Pharmacol. 2018 Mar; 7(3): 135-146.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869550/
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y Complex disease targets Not sufficiently selective
Cost Side effects
Adverse reactions Unsafe
Poor absorption Unstable

Low levels in body Competition

Not effective
enough

Impractical to
make

Confidence in
Rationale

Intellectual

Property

http://en.wikibooks.org/wiki/Structural Biochemistry/Outside the Cell



http://en.wikibooks.org/wiki/Structural_Biochemistry/Outside_the_Cell
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| 30/33 Parallel approaches to tackle attrition in pharmaceutical R&D

=
o 9 Confidence in proof of concept
)
Confidence in compound Confidence in target
Pharmacokinetics/
pharmacodynamics Systems pharmacology

Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Vicini P, van der Graaf PH. Clin Pharmacol Ther. 2013
May;93(5):379-81. Used by permission.



https://www.ncbi.nlm.nih.gov/pubmed/23598453
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o ¥ ° Project Modeling (Molecule-specifi
IND EOP2 BLA/NDA
¢ Pre-IND Ph la Ph I/l Ph il Ph IV
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Pre IND Phase L1/
« Human dose - Dose optimization: translational & clinical PK/PD *Dose
projeftic?ni o Regimen and dosing schedule optimization: longitudinal M&S justification
:%”s adona - Effect of intrinsic factors: PopPK, PBPK » Clinical
« Exposure il - Effect of extrinsic factors: PopPK, PBPK - pharmacology
target - QT prolongation: concentration-QT characterization
:thigf':w;:.at = Decision making
tissue pK,p;j’ . EE?DOE}J F{EeJ and response at site of action: biomarker PK/PD, « Label
PBPK/PD

- Sampling optimization: Trial simulation

Platform Modeling (Cross-molecules)

M&S for molecule platform and/or disease platform: disease progression, prediction of outcome by early
endpoints, literature meta-analysis, system pharmacology modeling (QSP), etc.

Challenges and Opportunities in Dose Finding in Oncology and Immuno-oncology. Ji Y, Jin JY, Hyman DM, Kim G, Suri A. Clin Transl Sci. 2018 Feb 1. doi: 10.1111/cts.12540.



https://www.ncbi.nlm.nih.gov/pubmed/29392871
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177,60 147,23
9 5

215,09
7

Clinical studies

85,676

Modelling literature

Positive control

literature 687 244

total number of documents; nd number of documents labelled with a disease.
a

clinicaltrials.gov.

b

Medline — text mining query for models.

G
BioModels database.

The promises of quantitative systems pharmacology modelling for drug development. V.R. Knight-Schrijver, V. Chelliah, L. Cucurull-Sanchez, N. Le Novere. Comput Struct Biotechnol

J. 2016; 14: 363-370.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064996/
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Need Pharmacology Collaboration
Prior Understanding
Knowledge the Translation

Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation. B Ribba, HP Grimm, B Agoram, MR Davies, K Gadkar, S Niederer, N van Riel, J Timmis,
PH van der Graaf. CPT Pharmacometrics Syst Pharmacol. 2017 Aug; 6(8): 496—498.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572127/
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Cost: Frame early expectation that Value Added: Clarify early on
M&S can be a significant endeavour what the investment’s added value
in terms of both time invested and should be, by setting M&S up to
cost required, but do not lose sight of answer relevant questions that are as
return on investment crisp and directed as possible

Check In: The M&S team must QUiCk Wins: Try and use
make a sustained effort to frequently preliminary versions of the model to
communicate with, and provide continuously propose novel
updates to, all the stakeholders (e.qg. hypotheses, design experiments and
project team) over time otherwise keep stakeholders engaged
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A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1-theoretical model. Chen X, Hickling TP, Vicini P. CPT Pharmacometrics Syst

Pharmacol. 2014 Sep 3;3:e133.
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 2-model applications. Chen X, Hickling TP, Vicini P. CPT Pharmacometrics Syst

Pharmacol. 2014 Sep 3;3:e134.


https://www.ncbi.nlm.nih.gov/pubmed/25184733
https://www.ncbi.nlm.nih.gov/pubmed/25184734
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5. MHC-II allele genotype
6. Naive T cell number
7. Naive B cell number
8. Drug Clearance rate

<

~

Epitope 1 Epitope 2 Allele frequencyin
MHC-II allel .

MHC-I allele binding  binding affinity atele North America

affinity (nM) (nl) DRB1*04:01 0.089
DRB1*04:01 123 85 DRB1704:03 0.053
DRB1*04:03 78.52 147.85 DRB1*04:04 0.036
DRB1*04:04 180 38 DRB1°04:07 0.085
DRB1*07:01 75 77 3221 *g;g; 0600%893
DRB1*08:02 306 292 . : ’
DRB1*08:11 112.43 4000 LRz L
DRB1%11:01 317 293 DRB1*11:01 0.0436
DRB1°14:04 53.7 4000 DrEacle LT
DRB1*15:01 148 4000 DRB1*15:01 0.0083
Restof DRE1 4000 4000 Restof DRB1 alleles 0.46

alleles
A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 2—Model Applications. X Chen, T P Hickling and P Vicini. CPT 13

Pharmacometrics Syst. Pharmacol. (2014) 3, e134


http://www.ncbi.nlm.nih.gov/pubmed/25184734
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A Six-Stage Workflow for Robust Application of Systems Pharmacology. Gadkar K, Kirouac DC, Mager DE, van der Graaf PH, Ramanujan S. CPT Pharmacometrics Syst Pharmacol. 2016

May;5(5):235-49.


https://www.ncbi.nlm.nih.gov/pubmed/27299936
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Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers. Nayak S, Lee D, Patel-Hett
S, Pittman DD, Martin SW, Heatherington AC, Vicini P, Hua F. CPT Pharmacometrics Syst Pharmacol. 2015 Jul;4(7):396-405.



https://www.ncbi.nlm.nih.gov/pubmed/26312163
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QSP Models Cannot Replace Experimentation

Applicationto (|

Clinical Data Impact on Clinical
and Questions | Development and

New Drug Success

Clinical experimentation is performed on the intact system
What we exclude from the model is as important as what we include

Quantitative Systems Pharmacology (QSP) as an Integral Component of Clinical Development: Case Studies. Presenters: Piet van der Graaf, Richard Bertz, Gabriel Helmlinger, Wayne
Chu. Moderator: CJ Musante. May 5, 2017.



https://iqconsortium.org/events/iq-webinar-quantitative-systems-pharmacology-qsp-clinical-drug-development-
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Need Pharmacology Collaboration
Prior Understanding
Knowledge the Translation

Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation. B Ribba, HP Grimm, B Agoram, MR Davies, K Gadkar, S Niederer, N van Riel, J Timmis,
PH van der Graaf. CPT Pharmacometrics Syst Pharmacol. 2017 Aug; 6(8): 496—498.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572127/
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e Target properties and translational PK/PD

Development — QSP’s role is being defined

e Pharmacometrics, trial simulation

The overall goal should not be to “raise the bar for few”,

but to “shift the baseline” for the whole pharma sector

Model-Informed Drug Discovery and Development: Current Industry Good Practice and Regulatory Expectations and Future Perspectives. Marshall S, Madabushi R, Manolis E, Krudys K,
Staab A, Dykstra K, Visser SAG. CPT Pharmacometrics Syst Pharmacol. 2019 Feb;8(2):87-96.



https://www.ncbi.nlm.nih.gov/pubmed/30411538
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FDA

* Industry

QSP in development is often invoked when clinical data

interpretation is equivocal - Can it improve clinical trial results?

Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation EFPIA MID3 Workgroup, SF Marshall, R Burghaus, V Cosson, SYA

Cheung, M Chenel, O DellaPasqua, N Frey, B Hamrén, L Harnisch, F Ivanow, T Kerbusch, J Lippert, PA Milligan, S Rohou, A Staab, JL Steimer, C Tornge, SAG Visser. CPT
Pharmacometrics Syst Pharmacol. 2016 Mar; 5(3): 93—122.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809625/
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Network based | 1%

Delay differential egs. I 2%

Agent based . 14%

Deterministic PDE based - 19%

Stochastic - 29%

Statistical 44%

peterministic ooe based [N

T T T T T 1

0% 20% 40% 60% 80% 100%

A Survey of Software Tool Utilization and Capabilities for Quantitative Systems Pharmacology: What We Have and What We Need. Sergey Ermakov Brian J. Schmidt Cynthia J. Musante
Craig J. Thalhauser. CPT Pharmacometrics Syst Pharmacol. White Paper. First published: 12 November 2018.



https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/psp4.12373
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Clinical Medication Claims Molecular Profiling Family History
Demographics, EHR Data, Medication Orders, Medical Claims Genomic and Genetic
Lab Test Results, Diagnoses, Administration Preseri ﬁ' b ! CI; s Testing Data (SNPs/Panels), Historical Data on
Procedures, Pathology/ (Dose, Route, NDC/RxNorm oth I:I)p o dl'-ll'g tl 't Multi-Omics Data Health Conditions and
Histology Data, Radiology codes), Concomitant et r'ag ag 4 fegimen (Proteomics, Allergies Relating to
Images, Microbiology Data, Therapies, ez Transcriptomics , Patient and Extended
Provider Notes, Admission/ Point of Sale Data, Metabonomics, Family, Smoking
Discharge and Progress (Prescription & OTC) Lipidomics), Other Status, Alcohol Use
Reports, Performance Status  Prescription Refill, Allergies Biomarker Status
: 3 i
Mobile Health Environmental Patient Reported Social Media Literature
Fitness Trackers, Climate Factors, Patient Reported : . Disease Burden, Clinical
Wearable Devices, Pollutants, Infections, Outcomes, Surveys, PR G s, Characteristics,
Other Health Apps Lifestyle Factors (diets, Diaries (diets, habits), Twitter, Facebook, Prevalence/Incidence,
Measuring Activity and stress), Other personal Health Records, Blogs Rates of Treatment,
Body Function Environmental and

Adverse Event Reporting,

Resource Use and Costs,
Quality of Life Measures

Disease Control, Quality
of Life Measures

Occupational Sources

Innovation at the Intersection of Clinical Trials and Real-World Data Science to Advance Patient Care. Swift B, Jain L, White C, Chandrasekaran V, Bhandari A, Hughes DA, Jadhav PR.
Clin Transl Sci. 2018 Sep;11(5):450-460


https://www.ncbi.nlm.nih.gov/pubmed/29768712
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’ , 6 ) ' Comprehensive model of known/hypothesized
y biological/therapeutic mechanisms, including 14 i
feedbacks and redundancies
y ® f
echanism-based pathway or signaling
Mechanism-based path ignali
transduction models (e.g., deterministic ODE 15 i
models)

Mechanistic PK/PD models based on known / 15
hypothesized biological / therapeutic mechanisms

Mechanistic PBPK models 10 i
Data-driven pathway or signaling transduction 9
models (e.g., influence networks)

Spatial-temporal models of drug delivery and/or

effects (e.g., computational fluid dynamics
models)

A |
Unsure (QSP is loosely defined) 5 |
-

Agent-based models applied to biological
problems

Machine learning approaches (e.g., Bayesian | 4 QSP is loosely defined
networks) applied to biological problems u QSP is well defined

0 3 6 9 12 15 18 21
Number of Respondents

Preclinical QSP Modeling in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape. Marjoleen J.M.A. Nijsen, Fan Wu, Loveleena Bansal, Erica
Bradshaw-Pierce, Jason R. Chan, Bianca M. Liederer, Jerome T. Mettetal, Patricia Schroeder, Edgar Schuck, Alice Tsai, Christine Xu, Anjaneya Chimalakonda, Kha Le, Mark Penney,
Brian Topp, Akihiro Yamada, Mary E. Spilker CPT Pharmacometrics Syst Pharmacol. 2018 Mar; 7(3): 135—-146.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869550/
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Models g Preclinica Partial Differential
’ Equations
.

Digital Drug Screening s o Agent-Based Models
8,540,
Q‘

:
o0 ®
Molecular Modeling

Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success. Yankeelov TE, An G, Saut O, Luebeck EG, Popel AS, Ribba B, Vicini P, Zhou X, Weis JA, Ye K, Genin
GM. Ann Biomed Eng. 2016 Sep;44(9):2626-41.



https://www.ncbi.nlm.nih.gov/pubmed/27384942
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A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. Gong C, Milberg O, Wang B, Vicini P, Narwal
R, Roskos L, Popel AS. J R Soc Interface. 2017 Sep;14(134).



https://www.ncbi.nlm.nih.gov/pubmed/28931635
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Foundational ntegrated Rational Dose
Clinical am Effort in Selection for

Pharmacology I Pivotal

Understanding I t Registration
of Asset \ : Trials

Mathematical K Reducing Trial
. Model BN Burden for
F60,2,5) +¢ § “ Vulnerable

® Populations

Simplified
Dosing for
Patients and
Model-Informed Healthcare

Knowledge Generation Providers

Getting Innovative Therapies Faster to Patients at the Right Dose: Impact of Quantitative Pharmacology Towards First Registration and Expanding Therapeutic Use. Nayak S, Sander O,
Al-Huniti N, de Alwis D, Chain A, Chenel M, Sunkaraneni S, Agrawal S, Gupta N, Visser SAG. Clin Pharmacol Ther. 2018 Mar;103(3):378-383.



https://www.ncbi.nlm.nih.gov/pubmed/29330855
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’,, « Communication gap regarding M&S, both
o 7 within industry and between industry and

Framework for M&S in Regulatory Review
According to impact on regulatory decision

regulators

« Technical challenges, e.g. around

ngh impaCt * M&S to replace the usual evidence base ) F Standardi_zati_o_n L

Scientific advice, supporting documentatign,} \“ * Data ava_”ab”lty both within prolgra.msland
Regulatory Scrutiny among different programs and institutions

« Variable readiness by regulators or senior

executives to evaluate M&S

Influence of M&S expertise across

discovery and development

« Suitability of the current eCTD format for

including M&S results

Medium impact ‘ M&S to justify the evidence base l

Scientific advice, supporting documentation,} 4t [ ‘?
Regulatory scrutiny :

Low impact ‘ M&S to describe the available evidence base &

uoisioap Aloyenfal uo peduw
[ ]

Scientific advice, Supporting documentation, A
Regulatory scrutiny

The Role of Modeling and Simulation in Development and Registration of Medicinal Products: Output From the EFPIA/EMA Modeling and Simulation Workshop. Manolis E, Rohou S,
Hemmings R, Salmonson T, Karlsson M, Milligan PA. CPT Pharmacometrics Syst Pharmacol. 2013 Feb 27;2:e31



https://www.ncbi.nlm.nih.gov/pubmed/23835942
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Getting Innovative Therapies Faster to Patients at the Right Dose: Impact of Quantitative Pharmacology Towards First Registration and Expanding Therapeutic Use. Nayak S, Sander O,
Al-Huniti N, de Alwis D, Chain A, Chenel M, Sunkaraneni S, Agrawal S, Gupta N, Visser SAG. Clin Pharmacol Ther. 2018 Mar;103(3):378-383.



https://www.ncbi.nlm.nih.gov/pubmed/29330855
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It can be difficult to make the case for return on investment for systems pharmacology platforms,

but what about the data integration and communication they foster among project teams?

Quantitative Systems Pharmacology: A Case for Disease Models. Musante CJ, Ramanujan S, Schmidt BJ, Ghobrial OG, Lu J, Heatherington AC. Clin Pharmacol Ther. 2017
Jan;101(1):24-27.



https://www.ncbi.nlm.nih.gov/pubmed/27709613
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Quote attributed to Arthur Ashe
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Success is a journey, not a destination. M@LECULE ro

' “The doing is often more important PATIENT

than the outcome”
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The promises of gquantitative systems pharmacology modelling for drug development. V.R. Knight-Schrijver, V. Chelliah, L. Cucurull-Sanchez, N. Le Novere. Comput Struct Biotechnol

J. 2016; 14: 363-370.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064996/
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2. Matching Strategy
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Found in Translation: Maximizing the Clinical Relevance of Nonclinical Oncology Studies. Spilker ME, Chen X, Visswanathan R, Vage C, Yamazaki S, Li G, Lucas J, Bradshaw-Pierce

EL, Vicini P. Clin Cancer Res. 2017 Feb 15;23(4):1080-1090.


https://www.ncbi.nlm.nih.gov/pubmed/27551002
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Other Benefits of QSP is Elusive

®)  QSP modeling near term (1-year) deliverables

Prioritizing or evaluating combinations I 62% Understanding biology and drug’s MOA 78%
ic regi i B
phase 1 studies o s9% Data analysis and parameter estimation 61%

I
I
I
I
I
I
I

I
I
I
Evaluating biomarkers and stratifying patients I 56%

Preclinical phase (discovery) I 56% 60%

I 56%
Early clinical ~ phase 1 and 2 studies osow Simulating clinical experiments / trials 8%

Go / no-go decision making. - ar% | |

% term/long term) a7%
safety/toxicology as%
" . e [B | \ \
Late clinical - phase 3 studies

Other

(c)

2% 0% 10% 20% 30% 40% 50% 60% 70% 80%  90%

0% 10% 60%  70%

Constraints for QSP modeling

Lack of scientists with appropriate expertise/experience

Budgetary limitations

Lack of appropriate infrastructure

Lack of management interest and/or support
Other

None of the above: no obstacles are foreseen

Lack of data

0% 10% 20% 30% 40% 50% 60% 70%

The “constraints” listed are specific to the technical implementation of QSP principles and models

A Survey of Software Tool Utilization and Capabilities for

Quantitative Systems Pharmacology: What We Have and What We Need. Sergey Ermakov Brian J. Schmidt Cynthia J. Musante

Craig J. Thalhauser. CPT Pharmacometrics Syst Pharmacol. White Paper. First published: 12 November 2018.


https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/psp4.12373

O ?’ FR /M
® - O MOLECULE o
>,
) 2.2 %
o ¥ °

At ASCPT 2019: How Artificial Intelligence and Machine Learning Are Revolutionizing Drug

Discovery and Development, Thursday March 14 (available on ASCPT On Demand)

Image Credit: National Institutes of Health, BRAIN Initiative research program. BRAIN stands for Brain Research through Advancing Innovative Neurotechnologies. Learn more:
www.braininitiative.nih.gov/



http://www.braininitiative.nih.gov/
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Models and Machines: How Deep Learning Will Take Clinical Pharmacology to the Next Level. Hutchinson L, Steiert B, Soubret A, Wagg J, Phipps A, Peck R, Charoin JE, Ribba B.
CPT Pharmacometrics Syst Pharmacol. 2018 Dec 14.



https://www.ncbi.nlm.nih.gov/pubmed/30549240
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2%
v * Dose » Machine learning, neural networks
l  “Linear” approximation of nonlinear functions

» Works very well in many circumstances

‘ Pharmacokinetics ‘ - PK-PD, QSP and PMX quantitative modelling

l * Nonlinear approximations, based on mechanistic
_ understanding, of highly nonlinear processes
Concentration (functions)
! - Can we back-calculate how the machine learns,

_ so that it can help us in our mechanistic
‘PharmaCOdynarT"CS‘ understanding?

1 * On the other hand, this may not be that useful
Effact since machines and humans learn differently
ecC
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Results of protein folding
https://en.wikipedia.org/wiki/Protein_folding#/media/File:Protein_structure.png



https://en.wikipedia.org/wiki/Protein_folding#/media/File:Protein_structure.png
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Influence

Technology

":’3; Approaches In Clinical Development

e Actual model deliverable and required predictions

* Thought process used for model development

e Influence on data collection and analysis

e Continue to apply QSP prospectively in development

e State of the art technology for model building

* Novel data sources and need for curation

e Incorporate emerging model building approaches

e Increase applications of QSP and pre-competitive sharing
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